VASSCAA-4/第49回真空に関する連合講演会 講演スライド

High-Speed Pumping to UHV

Ko YAMAZAKI¹, Junichi SHIKE¹, Motoi YAMAGATA¹, Masahiro KITANO¹ Michiru NISHIWAKI², Shigeki KATO²

> Kitano Seiki Co., Ltd¹ High Energy Accelerator Research Organization²

> > E-mail: yamazaki@kitano-seiki.co.jp

Contents

Background
Objective
Experimental Details
Results and Discussions
Conclusions

平成20年10月28日 くにびきメッセ「島根県立産業交流会館」

KITANO SEIKI

Background

Development of a high-speed pumping system for UHV yields to us

- Reduction of cost and waiting time for aiming experiment and production
- · Reduction of power consumption
- Reduction of CO₂ emission which seriously influences global warming

It is well known that

- High-speed pumping is limited by water desorption from chamber surface
- The reduction of roughness of a vacuum surface is able to reduce outgassing from the surface

Main source of water vapor absorbed on chamber surface

- Atmosphere
- N₂ of purge gas

VASSCAA-4

Objective

In this work, we aim quick pumping down to UHV without baking of system

- control of water vapor in a N₂ gas purge line
- surface treatment of chambers
- measurement of outgassing rate and residual gas analysis

VASSCAA-4

Experimental Procedure

Pumping Process

- · Filled with nitrogen gas (4N) with 1atm at 1 hour
- · The all pumps were suited on at same time

Measurement of Outgassing Rate

- Orifice: 5.2 x 10⁻³ m ³ s⁻¹, 297 K
- Introduced gas: N₂ or Air (Pressure: N₂ equivalent)

VASSCAA-4

Water Vapor Concentration of Purge Gas

Purge gas	Purge Line	Water Concentration (vol. ppm)
Nitrogen	Stainless Steel Tube	0.065
Nitrogen		2.6
Nitrogen		12
Nitrogen	Polyurethane tube	160
Air	Stainless Steel Tube	12000

Water vapor concentration of purge gas is

- ·significantly influenced by product material of the gas purge line
- ·considerably reduced with baking of the purge line and ${\rm N_2}$ gas flow rate in the line

VASSCAA-4 KITANO SEIKI

Conclusion

- •We carried out control of water vapor in a N₂ gas purge line in addition to surface treatments of chambers.
- •It was found that the main residual gas in the chamber without baking was H₂ after pumping down with the low concentration of water vapor. This quality of residual gas is equivalent to the quality in a baked UHV system.
- •The introduction of well controlled N $_2$ gas to the vacuum system which was not baked out has proved a pressure of 3×10^{-8} Pa for 24 hours in the chamber without orifice. The pumping time to reach the pressure of 1×10^{-6} Pa was also able to be shortened with two orders of the magnitude.
- •High-speed pumping demonstrated in this study should considerably contribute to reduce waiting time before vacuum work and electrical power consumption, namely, CO₂ emission which seriously influences global warming

VASSCAA-4